Weighted branching formulas for the hook lengths
نویسندگان
چکیده
The famous hook-length formula is a simple consequence of the branching rule for the hook lengths. While the Greene-Nijenhuis-Wilf probabilistic proof is the most famous proof of the rule, it is not completely combinatorial, and a simple bijection was an open problem for a long time. In this extended abstract, we show an elegant bijective argument that proves a stronger, weighted analogue of the branching rule. Variants of the bijection prove seven other interesting formulas. Another important approach to the formulas is via weighted hook walks; we discuss some results in this area. We present another motivation for our work: J-functions of the Hilbert scheme of points. Résumé. La formule bien connue de la longueur des crochets est une conséquence simple de la règle de branchement des longueurs des crochets. La preuve la plus répandue de cette règle est de nature probabiliste et est due à GreeneNjenhuis-Wilf. Elle n’est toutefois pas complètement combinatoire et une simple bijection a été pendant longtemps un problème ouvert. Dans ce résumé étendu, nous proposons un argument bijectif élégant qui démontre une version à poids plus forte de cette règle. Des variantes de cette bijection permettent d’obtenir sept autres formules intéressantes. Une autre approche importante de ces formules est via les marches des crochets à poids. Nous discutons certains résultats dans cette direction. Enfin, nous présentons aussi une autre motivation à l’origine de ce travail: les Jfonctions du schéma d’Hilbert des points. Resumen. La famosa fórmula de la longitud de codos es una consecuencia simple de la ley de ramificación de las longitudes de los codos. Mientras que la prueba probabilı́stica de la fórmula de Greene-Nijenhuis-Wilf es la más famosa, ésta no es del todo combinatoria. Por mucho tiempo el problema de encontrar una prueba biyectiva de la formula estuvo abierto. En este resumen extendido, mostramos un argumento biyectivo elegante que prueba una variante ponderada más robusta de la ley de ramificación. Variantes de la biyección prueban otras siete fórmulas interesantes. Otro enfoque importante a las fórmulas es a traves de caminos ponderados de codos: discutimos unos resultados en esta área. Presentamos otra motivación: las J-funciones del esquema de Hilbert de puntos.
منابع مشابه
The Weighted Hook Length Formula III: Shifted Tableaux
Recently, a simple proof of the hook length formula was given via the branching rule. In this paper, we extend the results to shifted tableaux. We give a bijective proof of the branching rule for the hook lengths for shifted tableaux; present variants of this rule, including weighted versions; and make the first tentative steps toward a bijective proof of the hook length formula for d-complete ...
متن کاملA Unifying Approach for Proving Hook-Length Formulas for Weighted Tree Families
We propose an expansion technique for weighted tree families, which unifies and extends recent results on hook-length formulas of trees obtained by Han [10], Chen et al. [3], and Yang [19]. Moreover, the approach presented is used to derive new hook-length formulas for tree families, where several hook-functions in the corresponding expansion formulas occur in a natural way. Furthermore we cons...
متن کاملCombining Hook Length Formulas and Bg-ranks for Partitions via the Littlewood Decomposition
Recently, the first author has studied hook length formulas for partitions in a systematic manner. In the present paper we show that most of those hook length formulas can be generalized and include more variables via the Littlewood decomposition, which maps each partition to its t-core and t-quotient. In the case t = 2 we obtain new formulas by combining the hook lengths and BG-ranks introduce...
متن کاملHook Length Formulas for Trees by Han's Expansion
Recently Han obtained a general formula for the weight function corresponding to the expansion of a generating function in terms of hook lengths of binary trees. In this paper, we present formulas for k-ary trees, plane trees, plane forests, labeled trees and forests. We also find appropriate generating functions which lead to unifications of the hook length formulas due to Du and Liu, Han, Ges...
متن کاملCharacterizing weighted MSO for trees by branching transitive closure logics
We introduce the branching transitive closure operator on weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching t...
متن کامل